
소프트웨어 공학 개론

강의 5: 객체지향 개념

최은만
동국대학교 컴퓨터공학과

강의 5: 객체지향 개념

최은만
동국대학교 컴퓨터공학과

왜 객체지향인가?

l 절차적 패러다임 vs. 객체지향 패러다임

l 뭐가 다르지?

2

l 절차적 패러다임 vs. 객체지향 패러다임

l 뭐가 다르지?

C 언어

l 프로그램은 데이터와 함수로 구성
l 함수는 데이터를 조작
l 프로그램을 조직화 하기 위해

l 기능적 분할
l 자료 흐름도
l 모듈

Main program
global data
Main program
global data

l 프로그램은 데이터와 함수로 구성
l 함수는 데이터를 조작
l 프로그램을 조직화 하기 위해

l 기능적 분할
l 자료 흐름도
l 모듈

Main program
global data
Main program
global data

function1 function2 function3

call call call

return return return

3

C 언어 - 절차적 프로그래밍

l 메일 처리 시스템

Message in queue
전화

팩스

LAN

Internet

User terminal
4

절차적 프로그램의 구조

Mail Program

Initialization
routines etc. for(; ;) { } Termination

routines

Global data

5

Mail-item
reception

User-command
interpretation

Select
Mail-item

Delete
Mail-item

Show
content

Show summary

여러 다른 타입을
구별하여야 하는
루틴

메일 큐의 구조를
알아야 하는 루틴

너무 자세한 요구의 유입

void ShowContent(Mainitem* mailitem)
{

...
switch(mailitem->type)
{
case EMAIL: ShowContentofEmail(mailitem); break;
case FAX: DrawPictureofFax(mailitem); break;
...
}

}

메일 타입 추가되면
구조 변경됨

void ShowContent(Mainitem* mailitem)
{

...
switch(mailitem->type)
{
case EMAIL: ShowContentofEmail(mailitem); break;
case FAX: DrawPictureofFax(mailitem); break;
...
}

}

6

C 프로그램

l 프로그램 = 함수의 집합
l 함수가 서로 자료를 주고 받음

l 함수와 자료가 분리
l 설계 작업

l 자료, 함수 안의 알고리즘, 함수의 구조에 초점

l 함수의 재사용이 어려움
l 설계 방법

l 함수와 자료를 별도로 생각
l 모듈 사이의 연관 복잡

l 프로그램 = 함수의 집합
l 함수가 서로 자료를 주고 받음

l 함수와 자료가 분리
l 설계 작업

l 자료, 함수 안의 알고리즘, 함수의 구조에 초점

l 함수의 재사용이 어려움
l 설계 방법

l 함수와 자료를 별도로 생각
l 모듈 사이의 연관 복잡

7

New Way - 객체지향

l 프로그램 = 클래스의 집합

l 프로그래밍
l 어떤 객체가 필요하며
l 어떤 오퍼레이션이 필요
l 어떻게 서로 협력하여야 하는지

를 결정하는 일

l 메일 타입 추가 용이
l 다른 구조에 영향이 적음

Mail System
data

Mail System
data FAX

data
FAX
data

message

message

message

l 프로그램 = 클래스의 집합

l 프로그래밍
l 어떤 객체가 필요하며
l 어떤 오퍼레이션이 필요
l 어떻게 서로 협력하여야 하는지

를 결정하는 일

l 메일 타입 추가 용이
l 다른 구조에 영향이 적음

8

e-Mail
data

e-Mail
data

UI
data
UI

data

message

message

message

메시지 호출

9

복잡함을 잘 다루는 방법

l PC 하드웨어
l 버스
l 메모리
l CPU
l 스크린
l 디스크 드라이브

l 객체
l 내부 - 데이터와 이를 조작하는 함수가 있는 작은 단위의 프로그램
l 외부 – 함수 인터페이스, 내부의 복잡한 변수는 감추어짐

내부는 복잡하지만

인터페이스는 간단

-업그레이드 간단

-새 PC 설계, 제조 간단해짐

l PC 하드웨어
l 버스
l 메모리
l CPU
l 스크린
l 디스크 드라이브

l 객체
l 내부 - 데이터와 이를 조작하는 함수가 있는 작은 단위의 프로그램
l 외부 – 함수 인터페이스, 내부의 복잡한 변수는 감추어짐

10

클래스와 객체

l 클래스: 객체를 정의한 템플릿

l 객체는 생성자로 생성
l 같은 클래스에 속하는 메소드(예

deposit, withdraw, fundTransfer,
…)

l 각 객체와 관련된 인스턴스 변수의
값은 다름 (예 accountOwner,
balance, creditLimit)

l 메소드와 변수의 관계
l 객체와 관련된 메소드(예 withdraw)

가 실행되면 인스턴스 변수의 값을
바꾸어 놓음(예 balance)

Class

Account

Emplo
yee

l 클래스: 객체를 정의한 템플릿

l 객체는 생성자로 생성
l 같은 클래스에 속하는 메소드(예

deposit, withdraw, fundTransfer,
…)

l 각 객체와 관련된 인스턴스 변수의
값은 다름 (예 accountOwner,
balance, creditLimit)

l 메소드와 변수의 관계
l 객체와 관련된 메소드(예 withdraw)

가 실행되면 인스턴스 변수의 값을
바꾸어 놓음(예 balance)

11

Emplo
yee

Object

Mutual Fund

Saving

John

Mary

Checking

클래스

l 클래스에 의하여 제공될 서비스를 정의한 것 – public 메소드
l 내부에서만 사용될 메소드 – private 메소드
l 인스턴스 변수 – 외부 조작이 불가능하도록 private 선언

public class BankAccount {

public void BankAccount {
}

public void deposit(int amount) {
balance += amount;

}
// additional methods such as withdrawal…

private String accountNumber;
private String accountOwner;
private int balance = 0;
...

}

Multiple constructors
may be providedBankAccount

12

public class BankAccount {

public void BankAccount {
}

public void deposit(int amount) {
balance += amount;

}
// additional methods such as withdrawal…

private String accountNumber;
private String accountOwner;
private int balance = 0;
...

}

instance
variables /
attributes

Method
definition

- accountNumber
- accountOwner
- balance

+ deposit
+ withdrawal
+ printStatement

클래스:=자료+오퍼레이션

l 사원
l 이름
l 전화번호
l 직위
l 급여
l 경력
l …

l 오퍼레이션
l 승진
l 전화번호검색
l 경력 조회
l 직위 조회
l …

l 타이머
l 시각
l 세팅 시간
l …

l 오퍼레이션
l 시각 변경
l 세팅
l Clear
l …

l 전화번호
l 이름
l 전화번호
l 그룹
l 메일주소
l …

l 오퍼레이션
l 추가
l 삭제
l 전화번호검색
l …

l 사원
l 이름
l 전화번호
l 직위
l 급여
l 경력
l …

l 오퍼레이션
l 승진
l 전화번호검색
l 경력 조회
l 직위 조회
l …

l 전화번호
l 이름
l 전화번호
l 그룹
l 메일주소
l …

l 오퍼레이션
l 추가
l 삭제
l 전화번호검색
l …

13

클래스와 객체

l 클래스
l 타입 선언
l 객체들이 갖는 자료와 오퍼레

이션을 정의한 것
l 객체 생성을 위한 템블릿

l 객체
l 클래스의 인스턴스
l 구체적인 자료값(실체)을 가

짐

사원
이름
직위

승진()

클래스이름

자료

오퍼레이션

l 클래스
l 타입 선언
l 객체들이 갖는 자료와 오퍼레

이션을 정의한 것
l 객체 생성을 위한 템블릿

l 객체
l 클래스의 인스턴스
l 구체적인 자료값(실체)을 가

짐
이름:김영희
직위:부장

이름:홍길동
직위:직원

이름:김동국
직위:팀장

14

15

객체의 생성

16

메소드

1717

메소드

l 메소드는 문장 블록과는 다르게 중첩(nested)될 수 없음
l 메소드는 호출되기 전에 선언할 필요가 없음

l 정의와 호출 순서가 뒤바뀌어도 됨

l 실행은 항상 메인 메소드로부터

public class MyMainClass
{

public static void main(String[] args)
{

<statements that define the main method>
}

}

18

public class MyMainClass
{

public static void main(String[] args)
{

<statements that define the main method>
}

}

메소드의 호출

Employee

Name “john”
Salary 1000.00

john

main
1: Employee john =

new Employee ("John", 1000.00);
john.printInfo();

4: john.printInfo()

19

who

giveTwice

Name “john”
Salary 1000.002: giveTwice

(john)

3: who.giveRaise(200);

상속

l 상속의 의미
l 상위 클래스의 속성과 연산을 물려 받음(Employee 객체는 name, age

인스턴스 변수와, birthday() 메소드를 가짐)

l 슈퍼클래스(superclass), 서브 클래스(subclass)
l 예>직원 : 슈퍼클래스 , 관리자 : 서브클래스

class Person {
String name;
int age;
void birthday () {

age = age + 1;
}

}

class Employee
extends Person {

double salary;
void pay () { ...}

}

20

class Person {
String name;
int age;
void birthday () {

age = age + 1;
}

}

class Employee
extends Person {

double salary;
void pay () { ...}

}

다형성(polymorphism)

l 다형성의 정의
l 여러 형태를 가지고 있다 (=여러 형태를 받아들일 수 있다)

l 같은 이름의 메시지를 다른 객체 or 서브클래스에서 가질 수 있음

class FamilyMember extends Person {
void birthday () { // override birthday() in Person

super.birthday (); // call overridden method
givePresent (); // and add your new stuff

}
}
FamilyMember Jennifer = new FamilyMember();
Person P = new Person();
Jennifer.birthday();
P.birthday();

21

class FamilyMember extends Person {
void birthday () { // override birthday() in Person

super.birthday (); // call overridden method
givePresent (); // and add your new stuff

}
}
FamilyMember Jennifer = new FamilyMember();
Person P = new Person();
Jennifer.birthday();
P.birthday();

변수가 서브클래스의 객체를 가질 수 있음

l FamilyMember는 Person 클래스의 서브 클래스
l FamilyMember 객체는 FamiliryMember 변수의 값으로 배정될 수 있음
l Person 객체는 Person 변수의 값으로 배정될 수 있음
l FamilityMember 객체는 Person 변수의 값으로 배정될 수 있음
l Person 객체는 FamilityMember 변수의 값으로 배정될 수 없음

• 모든 FamilyMember는 Person이나 모든 Person이 FamilyMember는 아님

l 캐스트 가능
l Person Rich = new Person();
l cast son_in_law = (FamilityMember) Rich

l FamilyMember는 Person 클래스의 서브 클래스
l FamilyMember 객체는 FamiliryMember 변수의 값으로 배정될 수 있음
l Person 객체는 Person 변수의 값으로 배정될 수 있음
l FamilityMember 객체는 Person 변수의 값으로 배정될 수 있음
l Person 객체는 FamilityMember 변수의 값으로 배정될 수 없음

• 모든 FamilyMember는 Person이나 모든 Person이 FamilyMember는 아님

l 캐스트 가능
l Person Rich = new Person();
l cast son_in_law = (FamilityMember) Rich

22

클래스의 관계

l 객체지향 모델링의 관계
l 연관(association)
l 전체 부분(whole/part)
l 상속(inheritance)
l 사용(use)

l 객체 사이의 관계를 프로그램에 반영

Window

ConsoleWindow DialogBox User

Event사용관계

상속관계

연관관계

l 객체지향 모델링의 관계
l 연관(association)
l 전체 부분(whole/part)
l 상속(inheritance)
l 사용(use)

l 객체 사이의 관계를 프로그램에 반영

23

ConsoleWindow DialogBox User

Control

전체부분 관계

연관관계

연관 관계

l 객체와 객체를 연결하는 구조적인 관계
l 방향성과 다중도를 고려

Mother Child
1 *

Class Mother{

………….

private Child[] theKids = new Child[20];

public addChild(Child ch);

}

배열 theKids는 Child에 대한 레퍼런스를 저장

배열의 크기가 Child의 수를 제한

Class Child{

………….

private Mother mom;

public setMom(mom);

}

변수 mom이 mother객체를 레퍼런스 함

Mom을 선언하므로 연관관계를 맺는다

24

Class Mother{

………….

private Child[] theKids = new Child[20];

public addChild(Child ch);

}

배열 theKids는 Child에 대한 레퍼런스를 저장

배열의 크기가 Child의 수를 제한

Class Child{

………….

private Mother mom;

public setMom(mom);

}

변수 mom이 mother객체를 레퍼런스 함

Mom을 선언하므로 연관관계를 맺는다

연관 관계

l 연관관계 생성 코드

l 추적가능성(navigability) 확인

l 서버클래스의 표현을 바꿀때
클라이언트클라이언트 코드를코드를 변경할변경할
필요필요 없다없다
l 배열로 표현된 theKids를

벡터로 바꿀 수 있다
l 이때 theKids를 private로 선언하면 클라이언트 프로그램에

영향을 주지 않고 서버클래스(Mother)의 표현을 바꿀 수 있다.

Mother theMom = new Mother();

Child jim = new Child();

Child jennifer new Child();

theMom.addChild(jim);

theMom.addChild(jennifer);

Jim.setMom(theMom);

Jinnifer.setMom(theMom)

l 연관관계 생성 코드

l 추적가능성(navigability) 확인

l 서버클래스의 표현을 바꿀때
클라이언트클라이언트 코드를코드를 변경할변경할
필요필요 없다없다
l 배열로 표현된 theKids를

벡터로 바꿀 수 있다
l 이때 theKids를 private로 선언하면 클라이언트 프로그램에

영향을 주지 않고 서버클래스(Mother)의 표현을 바꿀 수 있다.

25

Mother theMom = new Mother();

Child jim = new Child();

Child jennifer new Child();

theMom.addChild(jim);

theMom.addChild(jennifer);

Jim.setMom(theMom);

Jinnifer.setMom(theMom)

전체부분 관계 - 구성관계

l 전체부분(whole-part) 관계
l 구성관계(composition), 집합관계(aggregation)

l 구성관계
l 전체 개념 안에 구성요소 존재(테이블:4개의 다리+1개의 상판)
l 연관관계의 일종으로 관계 표시는 없어도 된다
l 방향성 ,추적가능성 고려, 컨테이너 객체 이용
l 대부분 has, comprise, consist of의 의미

l 구성관계의 특성
l 구성요소가 없이 전체가 존재할 수 없다
l 구성요소는 언제나 하나의 전체객체에 대한 부품이다
l 구성관계는 이질적 구성요소로 되어 있다

ll UMLUML표현표현: : 검은검은 다이아몬드다이아몬드

l 전체부분(whole-part) 관계
l 구성관계(composition), 집합관계(aggregation)

l 구성관계
l 전체 개념 안에 구성요소 존재(테이블:4개의 다리+1개의 상판)
l 연관관계의 일종으로 관계 표시는 없어도 된다
l 방향성 ,추적가능성 고려, 컨테이너 객체 이용
l 대부분 has, comprise, consist of의 의미

l 구성관계의 특성
l 구성요소가 없이 전체가 존재할 수 없다
l 구성요소는 언제나 하나의 전체객체에 대한 부품이다
l 구성관계는 이질적 구성요소로 되어 있다

ll UMLUML표현표현: : 검은검은 다이아몬드다이아몬드

26

전체부분 관계 - 집합관계

l 집합관계
l 예> 숲은 나무의 집합, 시/도는 군/구의 집합
l 컨테이너 클래스 사용
l 전체 개념의 클래스로부터 구성요소를 찾을 수 있음

l 집합관계의 특성
l 구성요소가 없이 전체가 존재할 수 있다
l 구성요소는 하나 이상의 전체집합에 소속 가능하다
l 구성관계는 동질적 구성요소로 되어 있다

ll UMLUML표현표현: : 흰흰 다이아몬드다이아몬드

l 집합관계
l 예> 숲은 나무의 집합, 시/도는 군/구의 집합
l 컨테이너 클래스 사용
l 전체 개념의 클래스로부터 구성요소를 찾을 수 있음

l 집합관계의 특성
l 구성요소가 없이 전체가 존재할 수 있다
l 구성요소는 하나 이상의 전체집합에 소속 가능하다
l 구성관계는 동질적 구성요소로 되어 있다

ll UMLUML표현표현: : 흰흰 다이아몬드다이아몬드

27

전체부분 관계 UML

Report

*

Table

28

Chapter

*

집합관계

Leg Top

4 1

구성관계

상속관계

l 상속관계(= 일반화 관계)
l 일반적 개념의 클래스와 더 구체적 클래스의 관계
l A kind of의 관계

l 명칭
l 일반적인 클래스 : 베이스 클래스
l 구체적인 클래스 : 파생된(derived) 클래스

ll UMLUML표현표현: : 자식클래스에서자식클래스에서 부모부모 쪽으로쪽으로 화살표화살표
l 상향식 화살표로 베이스 클래스를 포인트

ll 단일상속단일상속, , 다중상속다중상속
l 단일상속 : 하나의 베이스 클래스를 갖는다
l 다중상속 : 두 개 이상의 베이스 클래스를 갖는다

Box

l 상속관계(= 일반화 관계)
l 일반적 개념의 클래스와 더 구체적 클래스의 관계
l A kind of의 관계

l 명칭
l 일반적인 클래스 : 베이스 클래스
l 구체적인 클래스 : 파생된(derived) 클래스

ll UMLUML표현표현: : 자식클래스에서자식클래스에서 부모부모 쪽으로쪽으로 화살표화살표
l 상향식 화살표로 베이스 클래스를 포인트

ll 단일상속단일상속, , 다중상속다중상속
l 단일상속 : 하나의 베이스 클래스를 갖는다
l 다중상속 : 두 개 이상의 베이스 클래스를 갖는다

29

Weighted
Box

사용 관계

l 사용 관계
l 한 클래스가 다른 클래스를 코드 안에서 사용할 때

l 의미
l 코드상의 의존 관계
l 종속된 관계

l 일반적 유형
l 오퍼레이션의 매개변수로 다른 클래스를 사용하는 클래스

간의 연결
• 예>CourseSchedule클래스는 add과 remove 오퍼레이션을 위해

Course 클래스를 매개변수로 사용한다

ll UMLUML표현표현: : 점선점선 화살표화살표

CourseSchedule

Add(c: Course)

Remove(c:
Cpurse)

Event

l 사용 관계
l 한 클래스가 다른 클래스를 코드 안에서 사용할 때

l 의미
l 코드상의 의존 관계
l 종속된 관계

l 일반적 유형
l 오퍼레이션의 매개변수로 다른 클래스를 사용하는 클래스

간의 연결
• 예>CourseSchedule클래스는 add과 remove 오퍼레이션을 위해

Course 클래스를 매개변수로 사용한다

ll UMLUML표현표현: : 점선점선 화살표화살표

30

Add(c: Course)

Remove(c:
Cpurse)

관계의 비교

연관관계 전체부분 관계 상속관계 사용관계

관계

클래스 사이에

영구적인 의미
가 있는 관계

명확한 전체 부
분 개념

일반적, 구체적

관계

한 클래스에서

다른 클래스 객
체의 서비스를
사용

유지기
간

클래스 상태의

일부분으로 객
체가 살아있는
동안만 유지

클래스 상태의
일부분으로 클래
스 객체가 살아
있는 동안만 유
지

서브 클래스가
정의 될 동안
영구적

클래이언트나
서버 메소드가
활성된 경우만
관계 유지

31

유지기
간

클래스 상태의

일부분으로 객
체가 살아있는
동안만 유지

클래스 상태의
일부분으로 클래
스 객체가 살아
있는 동안만 유
지

클래이언트나
서버 메소드가
활성된 경우만
관계 유지

구현

관련된 객체에
대한 인스턴스
변수를 정의, 다
중도를 위하여
컨테이너 객체
사용

링크에 대한 레
퍼런스를 인스턴
스 변수로 정의,
다중도를 위하여
컨테이너 객체
사용

상속을 사용,
java의 경우 서
브클래스가 슈
퍼클래스를 확
장

클라이언트 클
래스 메소드가
서버 클래스에
대한

레퍼런스를 매
개변수로 가짐

UML

237점157점464점

교

Questions?

237점157점464점

교

Questions?

